Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Use exchanging, or regrouping when moving into the next column.

Concrete	Pictorial	Abstract
Combining two parts to make a whole - first by counting objects, then using mathematical equipment such as multilink or numicon.	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Counting on using number lines or numicon	A bar model that encourages children to count on. \square	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$
Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cube	Children to develop an understanding of equality e.g. $\begin{align*} & 6+\square=11 \tag{tabular}\\ & 6+5=5+\square \\ & 6+5=\square+4 \end{align*}$

TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$

Children to represent the base ten in a place value chart.

Looking for ways to make 10.

\[\)| $36+25=$ | $30+20=50$
 $5+5=10$
 $50+10+1=61$ |
| :---: | :---: |
| $1 \quad 5$ | 36 |

\]

Formal method:

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$ Objects should be used first.	Children to draw the concrete resources they are usin and cross out the correct amount. The bar model can also be used. இ®O	$4-3=$ -
Counting back (using number lines or number tracks) children start with 6 and count back 2 . $6-2=4$		Children to represent the calculation n a number line or number track and show their jumps. Encourage children to use an empty number line

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects they have used or use the bar model to illustrate wt they need to calculate. Part + Part $=$ Whole Whole - Part = Part	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Making 10 using ten frames. $14-5$	Children to present the ten frame pictorially and what they did to make 10 .	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

UNY C OF E ACADEMY CALCULATION POLICY

UNY C OF E ACADEMY CALCULATION POLICY

Conceptual variation; different ways to ask children to solve 391-186

| Raj spent $£ 391$, Timmy spent $£ 186$. |
| :--- | :--- |
| How much more did Raj spend? |

Calculate the difference between 391 and
186 .

Calculate the difference between 391 and 186.

What is 186 less than $391 ?$

Missing digit calculations

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model. $88 \quad 88 \quad 88$	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
		$\begin{aligned} & 2 \times 6=12 \\ & 6 \times 2=12 \end{aligned}$ Two lots of six is twelve. Six lots of two is twelve. $2+2+2+2+2+2=12$

UNY C OF E ACADEMY CALCULATION POLICY

	Children to represent the counters/base 10, pict e.g. the image below.	Use grid method to show 6 lots of 20 and 6 lots of 3			Expanded $\begin{array}{r} 23 \\ \times \quad 6 \\ \hline+\frac{120}{180}(6 \times 20) \end{array}$	Formal written method $\begin{array}{r} 6 \times 23= \\ 23 \\ \times \quad 6 \\ \hline 138 \\ \hline 11 \end{array}$
Multiplying 2-digit by 2 -digit etc. Only move on to these type of calculations when children are confident and show understanding of the grid method. Teach understanding of adding the zero in the formal written method by saying that 20 is $10 x$ larger than 2 , so you need to add the zero to make the product 10x larger.		70 4	20 1400 80 ddd to	210 12 gether		Formal written method $\begin{gathered} 74 \times 23 \\ 74 \\ \times 2,3 \\ \hline 222 \\ +1480 \in 200 \\ \hline 1702 \end{gathered}$
Multiplying with decimals - disregard the decimals to do the multiplication, and then insert the decimal point into the product. Match up the amount of decimal places in the multiplicands and the product as shown.					$\begin{array}{r} 3.1 \\ \times 5.9 \\ \hline 279 \\ \hline 1550 \\ \hline 1829 \\ \text { So, } \end{array}$	3.1×5.9 1829 \uparrow \uparrow 18.29 (1) (2) $\underset{20}{2}(\mathbb{1}$$.1 \times 5.9=18.29$

Calculation policy: Division

Key language: share, group, divide, divided by, half.

(2)

UNY C OF E ACADEMY CALCULATION POLICY

UNY C OF E ACADEMY CALCULATION POLICY

